Functional Loop Dynamics of the Streptavidin-Biotin Complex
نویسندگان
چکیده
Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop(3-4) in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop(3-4) from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop(3-4) and biotin. (3) The closure of loop(3-4) is concerted to the stable binding of biotin to streptavidin. When the loop(3-4) is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop(3-4) and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop(3-4) in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer.
منابع مشابه
Production of Recombinant Streptavidin and Optimization of Refolding Conditions for Recovery of Biological Activity
Background: Streptavidin is a protein produced by Streptomyces avidinii with strong biotin-binding ability. The non-covalent, yet strong bond between these two molecules has made it a preferable option in biological detection systems. Due to its extensive use, considerable attention is focused on streptavidin production by recombinant methods. Methods: In this study, streptavidin was express...
متن کاملStructure-based engineering of streptavidin monomer with a reduced biotin dissociation rate.
We recently reported the engineering of monomeric streptavidin, mSA, corresponding to one subunit of wild type (wt) streptavidin tetramer. The monomer was designed by homology modeling, in which the streptavidin and rhizavidin sequences were combined to engineer a high affinity binding pocket containing residues from a single subunit only. Although mSA is stable and binds biotin with nanomolar ...
متن کاملDevelopment of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin
A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop(3-4) functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop(3-4) keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino a...
متن کاملBiotin-assisted folding of streptavidin on the yeast surface.
Yeast surface display allows heterologously expressed proteins to be targeted to the exterior of the cell wall and thus has a potential as a biotechnology platform. In this study, we report the successful display of functional streptavidin on the yeast surface. Streptavidin binds the small molecule biotin with high affinity (K(d) ≈ 10(-14)M) and is used widely in applications that require stabl...
متن کاملStructure-Guided Design of an Engineered Streptavidin with Reusability to Purify Streptavidin-Binding Peptide Tagged Proteins or Biotinylated Proteins
Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allow...
متن کامل